Search results for "embryonic stem cell"
showing 10 items of 223 documents
Mouse embryonic stem cells are hypersensitive to apoptosis triggered by the DNA damage O(6)-methylguanine due to high E2F1 regulated mismatch repair.
2007
Exposure of stem cells to genotoxins may lead to embryonic lethality or teratogenic effects. This can be prevented by efficient DNA repair or by eliminating genetically damaged cells. Using undifferentiated mouse embryonic stem (ES) cells as a pluripotent model system, we compared ES cells with differentiated cells, with regard to apoptosis induction by alkylating agents forming the highly mutagenic and killing DNA adduct O(6)-methylguanine. Upon treatment with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), ES cells undergo apoptosis at much higher frequency than differentiated cells, although they express a high level of the repair protein O(6)-methylguanine-DNA methyltransferase (MGMT). Apo…
The Origin, Location, and Projections of the Embryonic Abdominal Motorneurons ofDrosophila
1997
We have used a retrograde labeling technique to identify motorneurons for each of the 30 body wall muscles of an abdominal hemisegment in the late stage 16Drosophilaembryo. Each motorneuron has a characteristic cell body position, dendritic arborization, and axonal projection. In addition, we have determined the neuroblasts of origin for most of the motorneurons we describe. Some organizational principles for the neuromuscular system have become apparent: (1) There is no obvious topographic relationship between the cell body positions of motorneurons and the position or orientation of the muscles they innervate; (2) motorneurons that innervate muscles of similar position and orientation are…
Neural Stem Cell Regulation by Adhesion Molecules Within the Subependymal Niche
2019
In the mammalian adult brain, neural stem cells persist in neurogenic niches. The subependymal zone is the most prolific neurogenic niche in adult rodents, where residing stem cells generate large numbers of immature neurons that migrate into the olfactory bulb, where they differentiate into different types of interneurons. Subependymal neural stem cells derive from embryonic radial glia and retain some of their features like apico-basal polarity, with apical processes piercing the ependymal layer, and a basal process contacting blood vessels, constituting an epithelial niche. Conservation of the cytoarchitecture of the niche is of crucial importance for the maintenance of stem cells and fo…
Homeostasis of Microglia in the Adult Brain: Review of Novel Microglia Depletion Systems.
2015
Microglia are brain macrophages that emerge from early erythro-myeloid precursors in the embryonic yolk sac and migrate to the brain mesenchyme before the blood brain barrier is formed. They seed the brain, and proliferate until they have formed a grid-like distribution in the central nervous system that is maintained throughout lifespan. The mechanisms through which these embryonic-derived cells contribute to microglia homoeostasis at steady state and upon inflammation are still not entirely clear. Here we review recent studies that provided insight into the contribution of embryonically-derived microglia and of adult 'microglia-like' cells derived from monocytes during inflammation. We ex…
Early detection of embryonic malformations by transvaginal and color Doppler sonography.
1994
A total of 834 women with uneventful pregnancies were followed prospectively until the 15th week of gestation by TVS to screen for early embryonic malformations. Twenty-eight embryonic anomalies were detected in this series (3.3%). The median gestational age at diagnosis was 11 (range, 8 to 15) weeks. Two neural tube defects were missed by early TVS screening. Two suspected abdominal wall defects were not confirmed by repeat mid-second trimester abdominal sonography representing 6.7% of all fetal malformations evident by 24 weeks of gestation. The sensitivity and specificity of TVS screening for fetal malformations in this series were 93.3 and 99.7%, respectively. In addition, the role of T…
p73 deficiency results in impaired self renewal and premature neuronal differentiation of mouse neural progenitors independently of p53
2010
10 p.-5 fig.
CEND1 and NEUROGENIN2 Reprogram Mouse Astrocytes and Embryonic Fibroblasts to Induced Neural Precursors and Differentiated Neurons
2015
Summary Recent studies demonstrate that astroglia from non-neurogenic brain regions can be reprogrammed into functional neurons through forced expression of neurogenic factors. Here we explored the effect of CEND1 and NEUROG2 on reprogramming of mouse cortical astrocytes and embryonic fibroblasts. Forced expression of CEND1, NEUROG2, or both resulted in acquisition of induced neuronal cells expressing subtype-specific markers, while long-term live-cell imaging highlighted the existence of two different modes of neuronal trans-differentiation. Of note, a subpopulation of CEND1 and NEUROG2 double-transduced astrocytes formed spheres exhibiting neural stem cell properties. mRNA and protein exp…
Decorin Expression and Oncosuppression in Human Embryonic Carcinomas
2019
Human embryonic stem cells in culture can transform into malignant, cancer-like cells exhibiting lesser differentiation. After transplantation, these transformed cells can form highly malignant germ cell tumors. In humans, germ cell tumors often appear at gonadal sites, like in the testis. In this study, we examined the expression of small leucine rich proteoglycans in normal and karyotypically abnormal human embryonic stem cells using a publicly available transcriptome data. We also examined the expression of the small leucine rich proteoglycans in healthy human testis and in different human testicular non-seminoma germ cell tumors using IST Online database. Furthermore, we localized the e…
Generation of cell diversity and segmental pattern in the embryonic central nervous system of Drosophila.
2005
Development of the central nervous system (CNS) involves the transformation of a two-dimensional epithelial sheet of uniform ectodermal cells, the neuroectoderm, into a highly complex three-dimensional structure consisting of a huge variety of different neural cell types. Characteristic numbers of each cell type become arranged in reproducible spatial patterns, which is a prerequisite for the establishment of specific functional contacts. The fruitfly Drosophila is a suitable model to approach the mechanisms controlling the generation of cell diversity and pattern in the developing CNS, as it allows linking of gene function to individually identifiable cells. This review addresses aspects o…
A luminal glycoprotein drives dose-dependent diameter expansion of the Drosophila melanogaster hindgut tube
2012
An important step in epithelial organ development is size maturation of the organ lumen to attain correct dimensions. Here we show that the regulated expression of Tenectin (Tnc) is critical to shape the Drosophila melanogaster hindgut tube. Tnc is a secreted protein that fills the embryonic hindgut lumen during tube diameter expansion. Inside the lumen, Tnc contributes to detectable O-Glycans and forms a dense striated matrix. Loss of tnc causes a narrow hindgut tube, while Tnc over-expression drives tube dilation in a dose-dependent manner. Cellular analyses show that luminal accumulation of Tnc causes an increase in inner and outer tube diameter, and cell flattening within the tube wall,…